Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer.
نویسندگان
چکیده
BACKGROUND Hereditary leiomyomatosis and renal cell cancer (HLRCC; OMIM 605839) is the predisposition to develop smooth muscle tumours of the skin and uterus and/or renal cancer and is associated with mutations in the fumarate hydratase gene (FH). Here we characterise the clinical and genetic features of 21 new families and present the first report of two African-American families with HLRCC. METHODS Using direct sequencing analysis we identified FH germline mutations in 100% (21/21) of new families with HLRCC. RESULTS We identified 14 germline FH mutations (10 missense, one insertion, two nonsense, and one splice site) located along the entire length of the coding region. Nine of these were novel, with six missense (L89S, R117G, R190C, A342D, S376P, Q396P), one nonsense (S102X), one insertion (111insA), and one splice site (138+1G>C) mutation. Four unrelated families had the R58X mutation and five unrelated families the R190H mutation. Of families with HLRCC, 62% (13/21) had renal cancer and 76% (16/21) cutaneous leiomyomas. Of women FH mutation carriers from 16 families, 100% (22/22) had uterine fibroids. Our study shows that expression of cutaneous manifestations in HLRCC ranges from absent to mild to severe cutaneous leiomyomas. FH mutations were associated with a spectrum of renal tumours. No genotype-phenotype correlations were identified. CONCLUSIONS In combination with our previous report, we identify 31 different germline FH mutations in 56 families with HLRCC (20 missense, eight frameshifts, two nonsense, and one splice site). Our FH mutation detection rate is 93% (52/56) in families suspected of HLRCC.
منابع مشابه
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC syndrome): a case report
Recently multiple cutaneous leiomyomas, uterine leiomyoimatosis and renal cancer have been described as a cancer syndrome with autosomal dominant pattern of inheritance.We report a 79-year-old man who presented with multiple hyperkertotic erythematous nodules on his right leg with histological diagnosis of pilar leiomyoma. In his past medical history several systemic co...
متن کاملFew FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families.
Loss of function mutations in the fumarate hydratase (fumarase, FH) gene were recently identified as the cause for dominantly inherited uterine and cutaneous leiomyomas and renal cell cancer. To further evaluate the role of FH in tumorigenesis, we screened FH mutations from tumor types seen in hereditary leiomyomatosis and renal cell cancer mutation carriers-41 uterine and 10 cutaneous leiomyom...
متن کاملModeling tumor predisposing FH mutations in yeast: effects on fumarase activity, growth phenotype and gene expression profile.
Heterozygous mutations in the fumarase (FH) gene cause the tumor predisposition syndrome hereditary leiomyomatosis and renal cell cancer (MIM 605839). While most families segregate a benign phenotype of multiple leiomyomas, others display a phenotype with early-onset renal cancer and leiomyosarcoma. Modifier genes may play a role in this, but an alternative explanation is simple genotype-phenot...
متن کاملMultiple Cutaneous and Uterine Leiomyomatosis
Multiple cutaneous and uterine leiomyomatosis (MCUL: OMIM 150800), which is also known as Reed syndrome, is an autosomal dominant disorder in which benign skin tumors arising from the arrector pili muscle and uterine fibroids typically develop in the third and fourth decades [1, 2]. Reed et al first reported on two families in which members of successive generations demonstrated cutaneous leiom...
متن کاملA cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.
The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical genetics
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2006